Serveur d'exploration sur le confinement (PubMed)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantifying the effects of quarantine using an IBM SEIR model on scalefree networks.

Identifieur interne : 001163 ( Main/Exploration ); précédent : 001162; suivant : 001164

Quantifying the effects of quarantine using an IBM SEIR model on scalefree networks.

Auteurs : Vitor M. Marquioni [Brésil] ; Marcus A M. De Aguiar [Brésil]

Source :

RBID : pubmed:32834581

Abstract

The COVID-19 pandemic led several countries to resort to social distancing, the only known way to slow down the spread of the virus and keep the health system under control. Here we use an individual based model (IBM) to study how the duration, start date and intensity of quarantine affect the height and position of the peak of the infection curve. We show that stochastic effects, inherent to the model dynamics, lead to variable outcomes for the same set of parameters, making it crucial to compute the probability of each result. To simplify the analysis we divide the outcomes in only two categories, that we call best and worst scenarios. Although long and intense quarantine is the best way to end the epidemic, it is very hard to implement in practice. Here we show that relatively short and intense quarantine periods can also be very effective in flattening the infection curve and even killing the virus, but the likelihood of such outcomes are low. Long quarantines of relatively low intensity, on the other hand, can delay the infection peak and reduce its size considerably with more than 50% probability, being a more effective policy than complete lockdown for short periods.

DOI: 10.1016/j.chaos.2020.109999
PubMed: 32834581
PubMed Central: PMC7305517


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantifying the effects of quarantine using an IBM SEIR model on scalefree networks.</title>
<author>
<name sortKey="Marquioni, Vitor M" sort="Marquioni, Vitor M" uniqKey="Marquioni V" first="Vitor M" last="Marquioni">Vitor M. Marquioni</name>
<affiliation wicri:level="4">
<nlm:affiliation>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">Campinas</settlement>
</placeName>
<orgName type="university">Université d'État de Campinas</orgName>
</affiliation>
</author>
<author>
<name sortKey="De Aguiar, Marcus A M" sort="De Aguiar, Marcus A M" uniqKey="De Aguiar M" first="Marcus A M" last="De Aguiar">Marcus A M. De Aguiar</name>
<affiliation wicri:level="4">
<nlm:affiliation>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">Campinas</settlement>
</placeName>
<orgName type="university">Université d'État de Campinas</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32834581</idno>
<idno type="pmid">32834581</idno>
<idno type="doi">10.1016/j.chaos.2020.109999</idno>
<idno type="pmc">PMC7305517</idno>
<idno type="wicri:Area/Main/Corpus">001B81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B81</idno>
<idno type="wicri:Area/Main/Curation">001B81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B81</idno>
<idno type="wicri:Area/Main/Exploration">001B81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantifying the effects of quarantine using an IBM SEIR model on scalefree networks.</title>
<author>
<name sortKey="Marquioni, Vitor M" sort="Marquioni, Vitor M" uniqKey="Marquioni V" first="Vitor M" last="Marquioni">Vitor M. Marquioni</name>
<affiliation wicri:level="4">
<nlm:affiliation>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">Campinas</settlement>
</placeName>
<orgName type="university">Université d'État de Campinas</orgName>
</affiliation>
</author>
<author>
<name sortKey="De Aguiar, Marcus A M" sort="De Aguiar, Marcus A M" uniqKey="De Aguiar M" first="Marcus A M" last="De Aguiar">Marcus A M. De Aguiar</name>
<affiliation wicri:level="4">
<nlm:affiliation>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP, Brazil.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">Campinas</settlement>
</placeName>
<orgName type="university">Université d'État de Campinas</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Chaos, solitons, and fractals</title>
<idno type="ISSN">0960-0779</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The COVID-19 pandemic led several countries to resort to social distancing, the only known way to slow down the spread of the virus and keep the health system under control. Here we use an individual based model (IBM) to study how the duration, start date and intensity of quarantine affect the height and position of the peak of the infection curve. We show that stochastic effects, inherent to the model dynamics, lead to variable outcomes for the same set of parameters, making it crucial to compute the probability of each result. To simplify the analysis we divide the outcomes in only two categories, that we call
<i>best</i>
and
<i>worst</i>
scenarios. Although long and intense quarantine is the best way to end the epidemic, it is very hard to implement in practice. Here we show that relatively short and intense quarantine periods can also be very effective in flattening the infection curve and even killing the virus, but the likelihood of such outcomes are low. Long quarantines of relatively low intensity, on the other hand, can delay the infection peak and reduce its size considerably with more than 50% probability, being a more effective policy than complete lockdown for short periods.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32834581</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0960-0779</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>138</Volume>
<PubDate>
<Year>2020</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Chaos, solitons, and fractals</Title>
<ISOAbbreviation>Chaos Solitons Fractals</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantifying the effects of quarantine using an IBM SEIR model on scalefree networks.</ArticleTitle>
<Pagination>
<MedlinePgn>109999</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.chaos.2020.109999</ELocationID>
<Abstract>
<AbstractText>The COVID-19 pandemic led several countries to resort to social distancing, the only known way to slow down the spread of the virus and keep the health system under control. Here we use an individual based model (IBM) to study how the duration, start date and intensity of quarantine affect the height and position of the peak of the infection curve. We show that stochastic effects, inherent to the model dynamics, lead to variable outcomes for the same set of parameters, making it crucial to compute the probability of each result. To simplify the analysis we divide the outcomes in only two categories, that we call
<i>best</i>
and
<i>worst</i>
scenarios. Although long and intense quarantine is the best way to end the epidemic, it is very hard to implement in practice. Here we show that relatively short and intense quarantine periods can also be very effective in flattening the infection curve and even killing the virus, but the likelihood of such outcomes are low. Long quarantines of relatively low intensity, on the other hand, can delay the infection peak and reduce its size considerably with more than 50% probability, being a more effective policy than complete lockdown for short periods.</AbstractText>
<CopyrightInformation>© 2020 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marquioni</LastName>
<ForeName>Vitor M</ForeName>
<Initials>VM</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Aguiar</LastName>
<ForeName>Marcus A M</ForeName>
<Initials>MAM</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, 13083-859, SP, Brazil.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Chaos Solitons Fractals</MedlineTA>
<NlmUniqueID>100971564</NlmUniqueID>
<ISSNLinking>0960-0779</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Complex networks</Keyword>
<Keyword MajorTopicYN="N">Epidemic outbreak</Keyword>
<Keyword MajorTopicYN="N">Quarantine</Keyword>
<Keyword MajorTopicYN="N">SEIR model</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32834581</ArticleId>
<ArticleId IdType="doi">10.1016/j.chaos.2020.109999</ArticleId>
<ArticleId IdType="pii">S0960-0779(20)30397-0</ArticleId>
<ArticleId IdType="pii">109999</ArticleId>
<ArticleId IdType="pmc">PMC7305517</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Nature. 1998 Jun 4;393(6684):440-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9623998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Feb 20;382(8):727-733</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31978945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Glob Health. 2020 Apr;8(4):e488-e496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32119825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 May 13;429(6988):180-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infection. 2020 Apr;48(2):155-163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32072569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Jul 24;369(6502):413-422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32532802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2020 May 12;323(18):1824-1836</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32282022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2020 Apr;26(4):506-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32284616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 May 21;382(21):1969-1973</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32227757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2020 Feb;25(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32046819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Quant Biol. 2020 Mar 11;:1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32219006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 May 15;368(6492):713-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32332062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):4023-4028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28351976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PeerJ. 2020 Jun 23;8:e9421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32612894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Med. 2020 Feb 17;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32079150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 15;286(5439):509-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521342</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
</country>
<region>
<li>État de São Paulo</li>
</region>
<settlement>
<li>Campinas</li>
</settlement>
<orgName>
<li>Université d'État de Campinas</li>
</orgName>
</list>
<tree>
<country name="Brésil">
<region name="État de São Paulo">
<name sortKey="Marquioni, Vitor M" sort="Marquioni, Vitor M" uniqKey="Marquioni V" first="Vitor M" last="Marquioni">Vitor M. Marquioni</name>
</region>
<name sortKey="De Aguiar, Marcus A M" sort="De Aguiar, Marcus A M" uniqKey="De Aguiar M" first="Marcus A M" last="De Aguiar">Marcus A M. De Aguiar</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/LockdownV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001163 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001163 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    LockdownV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32834581
   |texte=   Quantifying the effects of quarantine using an IBM SEIR model on scalefree networks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32834581" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a LockdownV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sun Jan 31 08:28:27 2021. Site generation: Sun Jan 31 08:33:49 2021